
Whole Platform LWC11 Submission

Riccardo Solmi Enrico Persiani

May 22, 2011

2

Contents

1 LWC11-Submission 7
1.1 LWC11 Submission using the Whole Platform 7

1.1.1 Phase 0 - Basics . 9
1.1.2 Phase 1 - Advanced . 9
1.1.3 Phase 2 - Non-Functional 10
1.1.4 Phase 3 - Freestyle . 10

2 LWC11-Task-0.1 11
2.1 Task . 11
2.2 Screenshots . 11
2.3 Overview . 11
2.4 Details . 12

2.4.1 Creating a Whole Project 12
2.4.2 Creating a Grammar Model 13
2.4.3 Using the Grammar Model 21

3 LWC11-Task-0.2 25
3.1 Task . 25
3.2 Screenshots . 25
3.3 Overview . 25
3.4 Details . 26

4 LWC11-Task-0.3 39
4.1 Task . 39
4.2 Screenshots . 39
4.3 Overview . 39
4.4 Details . 40

5 LWC11-Task-0.4 43
5.1 Task . 43
5.2 Screenshots . 43
5.3 Overview . 43
5.4 Details . 44

6 LWC11-Task-1.1 45
6.1 Task . 45
6.2 Screenshots . 45
6.3 Details . 45

3

4 CONTENTS

7 LWC11-Task-1.2 51

7.1 Task . 51

7.2 Screenshots . 51

7.3 Overview . 51

7.4 Details . 52

8 LWC11-Task-1.3 57

8.1 Task . 57

8.2 Screenshots . 57

8.3 Overview . 57

8.4 Details . 58

8.4.1 Creating the ER meta model 58

8.4.2 Playing with ER instances 59

8.4.3 Writing the transformation 59

9 LWC11-Task-1.4 61

9.1 Task . 61

9.2 Screenshots . 61

9.3 Details . 61

10 LWC11-Task-1.5 63

10.1 Task . 63

10.2 Overview . 63

10.3 Details . 63

11 LWC11-Task-1.6 67

11.1 Task . 67

11.2 Screenshots . 67

11.3 Details . 67

12 LWC11-Task-2.1 69

12.1 Task . 69

12.2 Overview . 69

12.2.1 Non breaking design . 69

12.2.2 Model Versioning and Migration 70

13 LWC11-Task-2.2 71

13.1 Task . 71

13.2 Overview . 71

14 LWC11-Task-2.3 73

14.1 Task . 73

14.2 Overview . 73

15 LWC11-Task-3.1 75

15.1 Task . 75

15.2 Overview . 75

CONTENTS 5

16 LWC11-Task-3.2 81
16.1 Task . 81
16.2 Overview . 81
16.3 Details . 81

17 LWC11-Task-3.3 85
17.1 Task . 85
17.2 Overview . 85
17.3 Details . 85

6 CONTENTS

Chapter 1

LWC11-Submission

1.1 LWC11 Submission using the Whole Plat-
form

This is the documentation of the Whole Platform submission to the Lan-
guage Workbench Competition 2011 (LWC11) . The assignment can
be found at http://www.languageworkbenches.net/LWCTask-1.0.pdf . For more
details and to find the others submissions see http://www.languageworkbenches.net/
.

How to install the Whole Platform

Before installing the Whole Platform be sure to have at least a working
Java 5 or higher. The easiest way to install the Whole Platform is to click
on the Download button on the Whole Platform SourceForge homepage
. Upon download completion simply unpack the archive and execute the
provided launcher (you can safely use the proposed workspace location). The
version used for developing the solution described below is: 1.0.0.v20110512-
1609.

How to install the solution

The source code of the solution described below can be found
at http://whole.sourceforge.net/docs/LWC11-WholePlatform.zip
. A PDF version of this document can be found at
http://whole.sourceforge.net/docs/LWC11-WholePlatform.pdf and is
also included with the source code archive.

Use the File > Import. . .> Existing Projects into
Workspace wizard to import the downloaded archive. Then open

7

http://www.languageworkbenches.net/LWCTask-1.0.pdf
http://www.languageworkbenches.net/
http://sourceforge.net/projects/whole
http://whole.sourceforge.net/docs/LWC11-WholePlatform.zip
http://whole.sourceforge.net/docs/LWC11-WholePlatform.pdf

8 CHAPTER 1. LWC11-SUBMISSION

the LWC11Deployer.xwl and deploy it by clicking on the Interpret
Model button on the toolbar. At this point, the Language Workbench
should look like this.

Now you are able to open every other artifact in the solution including
the examples.

Solution Overview

The solution presented below has been developed having in mind two goals:

• to exploit the benefits of a graphical language workbench by providing a
solution at the domain level and

• to support an agile approach by using model interpretation instead of code
generation to apply the solution.

The solution consists of 8 artifacts:

• two grammars for the Entities and the Instances DSLs

• one metamodel for the ER DSL

• two actions for defining and exposing as tooling all of the generators,
validator and content assist

• a deployer to hot deploy the solution in the running workbench

• a test suite for testing the grammars and the generators

1.1. LWC11 SUBMISSION USING THE WHOLE PLATFORM 9

• a custom DataType parser to support the date format used in the provided
examples

With graphical domain languages, lines of code is no longer a suitable metric
to measure the size and thus the conciseness of a solution. Let us show you that
almost all of the solution code can be visualized in a 27 inches monitor.

Figure 1.1: Solution Overview

1.1.1 Phase 0 - Basics

This phase is intended to demonstrate basic language design, including IDE
support (code completion, syntax coloring, outlines, etc).

• Task 0.1 Simple (structural) DSL without any fancy expression language
or such.

• Task 0.2 Code generation to GPL such as Java, C#, C++ or XML

• Task 0.3 Simple constraint checks such as name-uniqueness

• Task 0.4 Show how to break down a (large) model into several parts, while
still cross-referencing between the parts

1.1.2 Phase 1 - Advanced

This phase demonstrates advanced features not necessarily available to the same
extent in every LWB.

• Task 1.1 Show the integration of several languages

• Task 1.2 Demonstrate how to implement runtime type systems

• Task 1.3 Show how to do a model-to-model transformation

• Task 1.4 Some kind of visibility/namespaces/scoping for references

10 CHAPTER 1. LWC11-SUBMISSION

• Task 1.5 Integrating manually written code (again in Java, C# or C++)

• Task 1.6 Multiple generators

1.1.3 Phase 2 - Non-Functional

Phase 2 is intended to show a couple of non-functional properties of the LWB.
The task outlined below does not elaborate on how to do this.

• Task 2.1 How to evolve the DSL without breaking existing models

• Task 2.2 How to work with the models efficiently in the team

• Task 2.3 Demonstrate Scalability of the tools

1.1.4 Phase 3 - Freestyle

Every LWB has its own special ”cool features”. In phase three we want the par-
ticipants to show off these features. Please make sure, though, that the features
are built on top of the task described below, if possible.

• Task 3.1 Integration with the platform native modeling language

• Task 3.2 Testing

• Task 3.3 Debugging

Chapter 2

LWC11-Task-0.1

This page is part of the Whole Platform LWC11 Submission .

2.1 Task

0.1 Simple (structural) DSL without any fancy expression language
or such

Build a simple data definition language to define entities with properties.
Properties have a name and a type. It should be possible to use primitive types
for properties, as well as other Entities.

2.2 Screenshots

EntitiesGrammar.xwl

2.3 Overview

In a model driven approach, a language consists of a single mandatory part:
the structure or (meta)model, and zero or more notations, persistences and
other (mainly translational) semantics. By taking a domain specific approach,
the Whole Platform provides several languages targeted at language definition.
Each language is focused on one domain representing an aspect of language
definition (i.e. structure, concrete syntax, notation, tooling, generators).

11

12 CHAPTER 2. LWC11-TASK-0.1

The more straightforward way to define a language in Whole is to define
only its structure using the Models DSL and let the Platform provide generic
notations and persistences for the new language instances. We will illustrate
this solution at the end of this chapter.

Here, we consider as a requirement the ability to parse/unparse the textual
syntax used in the LWCTask examples. So, we start defining the grammar of
the language using the Grammars DSL and we let the Platform derive the
structure and notation.

The two solutions are in fact complementary: we can regard the latter as
a way to add a specific textual persistence to a language and conversely we
can regard the former as a way to specify the desired structure for a grammar
defined language.

2.4 Details

2.4.1 Creating a Whole Project

Creating a Whole Project is a fairly straightforward task. From the Eclipse
menu bar, select File > New > Whole Project. . .

In the Project name field, type org.whole.crossexamples.lwc11 and
click Finish when you are done.

Eventually, you’ll end up with a workspace containing the newly created
Whole Project.

2.4. DETAILS 13

A Whole Project it’s basically a Java Project configured to include the
Whole Platform Library in the build path.

2.4.2 Creating a Grammar Model

The Whole Language Workbench provides several meta-languages that can be
used to define new languages. The primary responsibility of a meta-language is
to define the abstract syntax of the language being modeled. Meta-languages
may also define concrete syntaxes, graphical notations or other language specific
features.

It is important to note that the Whole Language Workbench doesn’t im-
pose any distinction between languages and meta-languages. A language can
be considered implicitly a meta-language by adding the means to define new
languages using its own instances. Grammars is such a language, and allows
the definition of new languages (both abstract and concrete syntax) using an
EBNF like notation.

To create a Grammar model we have to use the New Whole Model
wizard, note that throughout this document we will use the term model as a
synonym of language instance. But to keep things clean, at first we will cre-
ate two package. A first package, named org.whole.crossexamples.lwc11 ,
to contain the language meta-models and the associated behavior. The sec-
ond package, named org.whole.crossexamples.lwc11.examples , to store the
provided sample models.

To create a new package, right-click on the src folder and select File >
New > Package .

Add both packages using the New Java Package wizard. Eventually, the
updated project will contain the newly created packages.

14 CHAPTER 2. LWC11-TASK-0.1

Now we can create a Grammar model by right-clicking on the org.whole.crossexamples.lwc11
package and selecting File > New > Whole Model .

The New Whole Model wizard window allows us to specify several details
regarding the model being created. The upper area allows the selection of the
containing folder, that we implicitly choose by right-clicking on the destination
package. After the destination path we can type EntitiesGrammar.xwl in the
File Name field. Finally, we can choose Grammars as the target language with
an empty starting template saved using the generic XML (Whole Template
Builder) persistence.

2.4. DETAILS 15

A resource named EntitiesGrammar.xwl will be created in the specified
folder, and a corresponding Whole Graphical Editor will be opened showing
the newly created resource contents.

16 CHAPTER 2. LWC11-TASK-0.1

The graphical editor shows a skeleton grammar that can be customized to
fit our needs. Before diving into the required grammar customization steps, it
is useful to understand some basic editing principles of the Whole Platform. In
the Whole Platform, language constructs are generically referred as Entities .
There are four main kinds of entities:

1. Simple entities represent a list of named features

2. Composite entities represent collections of entities

3. Data entities represent data values

4. Enum entities represent enumerated values

The preferred way of editing a model is the Whole Graphical Editor . Since
we are using a graphical editor, all the editing operations are performed using
the provided content assist (by using the context menu or the Meta+Space
keystroke) or by means of drag’n’drop operations. The set of allowed operations
will be restricted by the abstract syntax constraints of the target entity. Other
ways to inspect the model’s contents are the Outline View (that is always
bound to the active editor) and the projection views (i.e. the Details View).

Several notations are provided for every language family, some of them are
generic (i.e. available for a family of languages) other are language specific.
Some notations may hide parts of the models being edited (often to reduce
complexity), but the Outline always shows the entire tree structure. Notations
can be changed using the proper context menu item.

In the following screenshot a Whole Graphical Editor is shown in the
central pane of the workspace window with the WHITESPACE lexical pro-
duction being selected. The Outline on and the Details view show the same
selected production in different ways.

2.4. DETAILS 17

In the graphical editor depicted above several red and black squares are
shown. They are placeholders that can be replaced with concrete language en-
tities. In fact, the red ones must be replaced because they represent mandatory
features, while the smaller black ones are optional.

A placeholder figure is shown also on collection figures. While hovering a
composite figure, the insertion point is highlighted using an horizontal or vertical
narrow line. Both the context menu actions and the drag’n’drop operations use
that hint to modify the underlying figure.

Now we are ready to modify our first grammar model. We start defining
some features to identify the grammar: the uri (used to uniquely identify gram-
mars inside the platform), the namespace (used as package prefix for artifacts
produced by generation actions) and the grammar name. Finally, we have to
insert a LanguageDescriptor in the target language feature filled with analogous
information to identify the target language to which this grammar is bound.

As we previously said, to replace a placeholder use the content assist. To
avoid confusion, in this part of the tutorial simply stick to the Grammars
submenu of the content assist menu. To enter text editing mode it’s enough to
double-click on any editable label, to terminate text editing simply press the
carriage return or the escape key. Remove any other entity below the top level
pane so that the end result is similar to the figure shown below.

18 CHAPTER 2. LWC11-TASK-0.1

Note that we can have several grammar models bound to a single target
language, because the target language defines an abstract syntax while each
grammar defines a concrete syntax. Also, if the target language has not been
already defined into the Whole Platform, there’s a default mechanism to derive
it from the grammar model itself.

The next step is to define a delimiter, using a Literal Terminal that consumes
whitespace sequences. The delimiter can be used to determine the start and end
position of the next token to be consumed.

The literal terminal allows to specify a regular expression used to consume
input during a parse operation, and a literal string to produce output during
an unparse operation. The parse operation is useful to transform a stream of
characters into an in memory model, while the unparse operation produces the
opposite effect.

We can now define the first Production inside the phrase structure.

The Name production defines a rule to parse an identifier using a Data
Terminal . During the parse operation data terminals behave similarly to literal
terminals, but the captured data is stored in memory for later reuse. When the
unparse operation is invoked data terminals output the previously stored data
using the provided formatter.

2.4. DETAILS 19

It is worth noting that since the Name production contains only a data ter-
minal, it will be mapped to a data entity in the target language. The STRING
value next to the production name is used define the data-type of the mapped
data entity (this is particularly useful in case we have to derive the target lan-
guage from the grammar model itself).

The next production we define is called PrimitiveType . Basically, the
main rule uses a Choose construct to define the set of alternatives that may
be encountered during the parse operation, the values are matched using literal
terminals. Since the production matches only literal terminals, it will be mapped
to an enum entity in the target language. The As rules are used to explicit the
mapping between literals and enum values.

We can now define the Type production as the alternative between the
Name and the PrimitiveType rules, note that Grammar models allow arbi-
trary nesting of productions.

The Entity production uses a Concatenate rule to define the sequence of
LiteralTerminal s and NonTerminal s to be parsed. It has a nested Repeat
rule that defines an unbounded collection of properties. Each property will be
mapped using its own Property production. Note that a few non consuming
whitespace rules (Space , Indent and NewLine) are added to produce a prettier
output.

20 CHAPTER 2. LWC11-TASK-0.1

Finally we define the Entities production to be an unbounded collection of
entities. Note that the Entities non-terminal is specified as the default starting
symbol. The complete grammar is shown below.

2.4. DETAILS 21

2.4.3 Using the Grammar Model

The easiest way to use the grammar model is to deploy it into the Whole Plat-
form. We use the term deploy in several contexts to indicate that we are enriching
the runtime with the resource being deployed. In this specific case, we expect to

22 CHAPTER 2. LWC11-TASK-0.1

add to the platform the target language derived from the grammar model and
the configurations needed to persist such a language using the concrete syntax.

To deploy the grammar model we have to invoke the interpreter operation
. The Whole Language Workbench provides a toolbar that allows the user to
invoke a set of predefined operations on languages. The workbench enables only
the actions that can be executed on the active editor. So make sure that the
EntitiesGrammar is the active editor and click on the interpret action, as
shown below.

Now we can proceed by creating an example text file to be parsed. Using the
New File wizard create an empty file inside the org.whole.crossexamples.lwc11.examples
package and name it EntitiesExample.txt . The workbench will open a text
editor to modify the newly created file contents. Copy the example provided by
The Task in the open editor and save.

entity Person {
string name

string firstName

date birthDate

Car ownedCar

}

entity Car {
string make

string model

}

The example entities file can be opened using the already deployed gram-
mar. Right-click the EntitiesExample.txt and select Open With > Grammar
Based Persistence .

2.4. DETAILS 23

A new graphical editor showing the entities example content is opened. By
dragging the graphical editor’s tab on the right side of the editor area, you can
put the graphical and textual editors side by side.

Experiment with both the editors by performing changes on one side, and
looking at how they are reflected on the other side.

24 CHAPTER 2. LWC11-TASK-0.1

Chapter 3

LWC11-Task-0.2

This page is part of the Whole Platform LWC11 Submission .

3.1 Task

0.2 Code generation to GPL such as Java, C#, C++ or XML

Generate Java Beans (or some equivalent data structure in C#, Scala, etc.)
with setters, getters and fields for the properties.

3.2 Screenshots

EntitiesActions.xwl

3.3 Overview

In the Whole Platform, code generation is performed by the Artifacts Genera-
tor operation and consists of a regular model-to-model transformation followed
by an implicit and automatic model-to-storage synchronization. We don’t sup-
port the old model-to-text idiom of generating a target code starting directly
from a source model for the reasons we will outline below.

In general, code generation is a process involving two orthogonal activities:
transformation and persistence. The transformation is tied to a given code gen-

25

26 CHAPTER 3. LWC11-TASK-0.2

erator whereas the persistence is a reusable service configured by the output of
the transformation.

The complexity of the transformation is greatly reduced just by separating
the two activities. For instance you are not constrained by the ordering of the
target persistence format.

The availability of the target language is not an issue. Firstly, the Platform
already includes popular legacy languages such as Java , Objective C , XML
, and XSD . Secondly, if the target language is not bundled you can choose
either to model it or to use the Text DSL.

A separate model-to-model transformation can be incremental with respect
to the target model. For instance, the source structure-oriented Queries DSL
can produce multiple target fragments at once whenever it encounter a piece of
information on the source model.

Furthermore, a separate model-to-model transformation can be decomposed
in multiple simpler and reusable steps, each reflecting a clear intention. For
instance, model completion and normalization can be applied both at source
and target ends.

To resolve this task, we propose a solution consisting of an Artifacts Genera-
tor action that defines a model-to-model transformation from an Entities model
to an Artifacts model. The Artifacts model defines the output files with their
Java model contents that we want to generate into the (Eclipse) Workspace.

Keep in mind that the generator does not care about the notations and
persistences. So, even if you have defined the Entities language starting from its
grammar, you have to reason about it in terms of its (meta)model much like as
we have done at the end of the previous chapter.

Whole languages used: Actions , Artifacts , Queries , Commons , Java
.

3.4 Details

The following guide describes the steps required for the creation of a Java Beans
generator that uses the Entities language as its specification model. More specif-
ically, the generator will create a Java Bean for each declared Entity. Each bean
will be placed in the .beans sub-package of the Entities model container pack-
age.

Create a new empty Actions model using the new model wizard. Put it in
the usual org.whole.crossexamples.lwc11 package using the name EntitiesActions.xwl
.

3.4. DETAILS 27

The newly opened editor will show an empty Language Action Factory .

28 CHAPTER 3. LWC11-TASK-0.2

Replace the URI value with whole:org.whole.crossexamples.lwc11:EntitiesActions

and that of the Namespace with org.whole.crossexamples.lwc11 . Set EntitiesActions
as the actions name and http://lwc11.crossexamples.whole.org/entities

as the Target Language (instead of writing the uri, it is possible to choose the
Entities language from the content assist menu). Add a SimpleAction to the
artifacts generator toolbar action, and call it Artifacts Generator .

The input of an action is the root entity of the model on which it is being
invoked. To generate artifacts we have to develop a model-to-model transforma-
tion that takes as input an Entities model and produces as output an Artifacts
model. The resulting model will be used to create concrete artifacts on the
file-system.

3.4. DETAILS 29

By clicking the toggle next to the action a placeholder is revealed. An action
accepts any entity type for its definition, so the content assist invoked on the
placeholder presents us a list of options that includes all the possible entities of
the currently deployed languages. We start off by adding a Select statement of
the Queries language.

Queries is the language of choice of the Whole Platform to perform model-
to-model transformations. The Select statement defines a one to one mapping
between the entities matched by the from clause and those created by the select
clause. The from clause is an expression applied to the input and can match
many entities. As soon as an entity is matched, it is used as input to the select
expression to produce some other output entity. Finally, the where clause is
evaluated to further refine the output entity.

Our objective is to create an Artifacts model from an Entities model. We
will use a template on the select clause and a SelfStep of the Queries lan-
guage on the from clause. To define a template the Whole Platform provides
the StageUpFragment of the Commons language.

Note

Every Queries expression is evaluated in the context of a self entity.
An Actions action sets the self entity to be the root entity of the input

30 CHAPTER 3. LWC11-TASK-0.2

model. Queries constructs can also change the self entity for the evaluation
of nested expression. In this case SelfStep acts like an identity expression,
leaving the self entity unchanged.

To create an entity we have to revert to the StageUpFragment and popu-
late it with the desired resulting entity. We construct a Workspace , containing
a Project which in turn has a child Folder , and eventually a Package .

The above fragment resembles a typical Eclipse Java Project structure.

Now we have to define the artifacts names, otherwise it would be impossi-
ble for the generator to create them (you should recall that a red placeholder
indicates a mandatory feature). Instead of using fixed values we opt for for a
solution that allows us to define them at generation time. For this task we’ll
make use of the Variable construct of the Commons language.

Commons Variables are named entities with a type and a quantifier. They
can be used both in factory semantics and in pattern matching semantics sce-
narios. Pattern matching is used to match a fragment against a pattern, such
pattern contains Variables that are used to capture the corresponding parts
of the fragment being matched. After a successful match, all the matched vari-
ables will be defined in scope using the provided name and the matched value.
Factory semantics allows the construction of a fragment starting from a pattern
that contains Variables to be lazily replaced with variables values in scope.

Both factory semantics and pattern matching semantics constraint replace-
ments and matches using the provided Variable type and quantifier. Specific
language constructs can enforce Variable semantics or refine constraints.

The StageUpFragment in the select clause of the Select statement en-
forces factory semantics. Through the clear clause the strategy of clearing the
Variables can be altered.

We can proceed by adding the required Variables for the names of the
artifacts that will be generated. Set variable names as shown in the following
figure.

3.4. DETAILS 31

Remember that for the variable’s type the content assist proposes only the
replacements that are assignable compatible to the variable formal type.

Finally we expand the package artifact node and we add a variable to its
artifacts list. Call this last variable it beanClass and set * as the quantifier
(that will allow multiple additions).

To complete the generator, we must add in the where clause the required
statements to generate the replacements for the Variables defined in the se-
lect clause. Since we will add several statement we start adding a Sequence
construct of the Queries language.

Since the Sequence is a collection of other statements, the two red place-
holders can be either replaced or deleted.

32 CHAPTER 3. LWC11-TASK-0.2

The first value we want to calculate is the beansPackageName substitution,
obtained by concatenating the .beans suffix to the current package name. To
achieve this result we proceed using an Addition binary expression, setting
a VariableRefStep as the left operand and a StringLiteral as the right
operand. We continue by renaming the left operand to packageName (that is
already defined in scope as the current package name at generation time) and
by changing the value of the right operand to .beans .

To achieve the substitution we must bind the addition expression to a name,
for that purpose we wrap the addition with a Filter together with a Vari-
ableTest predicate. Finally, we rename the newly added Variable Test to
beansPackageName .

The end result is shown in the following figure.

Now that we have defined the name of the target package, we can proceed by
defining the file artifacts for the classes we want to generate. For this purpose
we will use a nested Select statement that will map each Entity in the source
model to a FileArtifact in the target model. Every generated FileArtifact
will be eventually added to the PackageArtifact by replacing the beanClass

.

All the Entities are extracted from the source model by applying the Type-
Test to the top down traversal of the source model made through the use of
the DescendantOrSelfStep construct. Using an Expression test , each ex-
tracted entity name is bound to the beanName variable that will be used later
in several places (the variables defined in the from clause are in scope also in
the select and where clause). Finally, a FileNameWithExtension is used for
the file artifact name to fix the java file extension.

3.4. DETAILS 33

We continue by defining the contents of the file artifact, that is the generated
bean Java code. To simplify this process we provide a simple skeleton Java class
that can be copied into the clipboard:

package my.pkg;

public class BeanName {
}

Clipboard contents can be easily pasted into the file artifact content feature as
shown in the following figure.

Note

The Paste As action is available only in the context menu by click-
ing the right mouse button. A dialog prompting for a persistence and a
stage level will be shown, just select Java and Up .

34 CHAPTER 3. LWC11-TASK-0.2

The final result will be a new StageUpFragment containing the modeled
counterpart of the pasted Java source code.

Now you could ask, why are we adding a new nested stage up fragment?
Recall that we are performing a model to model transformation where the target
model uses the Artifacts language to describe how to generate concrete artifacts
on the filesystem. The additional fragment will be retained on the target model,
to instruct the final artifacts generator how to set the contents of each created
file.

We can introduce some Variables of the Commons language to parame-
terize the bean class definition.

Building on the knowledge that we have gathered we add another nested
Select statement that maps source entity poperties to target Java filed decla-
rations.

3.4. DETAILS 35

The above fragment introduces several new Queries language constructs,
let’s review them synthetically.

The ChildStep allows to iterate over the children of a collection, while the
Path is used to compose several constucts. In the from clause a Path is used
to compose a FeatureStep to a Filter , which in turn wraps a ChildStep . In
this context the path allows to iterate over all the children of the properties

feature, also binding every child name to the pname variable.

The If statement is straightforward: it evaluates the do clause only if its
preadicate is satisfied. The Choose statement, that in this example contains
the If statements followed by a SelfStep , chooses the first of the contained
constructs that produces a value and consumes it.

To complete the generator we must add the statements to create a getter
and a setter for each generated field. To achieve this result, we wrap the select
clause with a Tuple that allows to generate several fragments at a time (in our
example two), than we add another StageUpFragment containing the method
implementations.

36 CHAPTER 3. LWC11-TASK-0.2

In this case getsetImpl is an InlineVariable (inline varibles are painted
with a dashed border) because we want to unwrap the generated MethodDec-
larations from the BodyDeclarations container before substituting them.

Eventually, we add the code needed to calculate the correct getter and setter
names.

In this last case we use two SameStageFragment to invoke two helper

3.4. DETAILS 37

methods written in Java. The variable pname we defined in the from clause is
referenced as a Java variable in the MethodInvocations .

38 CHAPTER 3. LWC11-TASK-0.2

Chapter 4

LWC11-Task-0.3

This page is part of the Whole Platform LWC11 Submission .

4.1 Task

0.3 Simple constraint checks such as name-uniqueness
For example, check the name uniqueness of the properties in the entities.

4.2 Screenshots

EntitiesActions.xwl

4.3 Overview

In a model driven approach a large part of structural constraints are enforced by
the definitions at the meta level. More specifically, model instances are always
conformant to their metamodels. For instance, the editors are not allowed to
violate such constraints and the content assist is limited in accordance with
them.

You can provide additional validation rules for your language. These rules
behave as soft constraints, so you are allowed to violate them in model instances.
The system can perform a validation check to inform you and to disable the
execution of certain operations on an invalid model.

In the Whole Platform, operations are system wise and cross language by
default. From within the Language Workbench the validation operation can be
launched either from the Operation menu or the toolbar. The results are shown

39

40 CHAPTER 4. LWC11-TASK-0.3

both in the Problems view and in the tooltips inside the editors. In a headless
execution context you can choose where to send the validation events.

The Actions language can be used to define the behavior of the validation
operation for your language.

To resolve this task, we propose a solution consisting of three validation
rules:

• Property name uniqueness - The name of a property must be unique in
the defining entity

• Property name conventions - The name of a property should begin with a
lower case letter

• Entity name conventions - The name of an entity should begin with an
upper case letter

4.4 Details

As we did for the artifacts generator action we start by creating a new Sim-
pleAction for the validator operation inside the previously created model En-
titiesActions.xwl .

The first things we have to define are the mechanism to add decorations to
the to the Problems view. For this task we use two QueryDeclarations to help
us add error or warning decorations to the decorationManager , a variable that
is always in scope in the context of a validation operation.

A QueryDeclaration is a callable unit of behavior with specific scope rules
that can be invoked using the Call construct (both of them belong to the
Queries language).

The Call and the QueryDeclaration operate on the same self. A Query-
Declaration can access all the variables in scope at call time except those listed
in its Names collection. The expressions declared on a Call will be evaluated
and bound to the Names of the called QueryDeclaration in the order they
have been declared.

4.4. DETAILS 41

As shown in the above figure, both addError and addWarning serve as a do-
main level adapters to the low level API implemented by the org.whole.lang.operations.IDecorationManager
interface.

We proceed by defining the structural elements of the validation: the Query-
Declarations that implement the aforementioned validation rules and the traver-
sal strategy to enforce such validation rules.

Note that on each descendant will be invoked in sequence all the three query
declarations validatePropertyNameUniqueness , validatePropertyName , and
validateEntityName .

42 CHAPTER 4. LWC11-TASK-0.3

The first query delaration must enforce property name uniqueness. Its im-
plementation verifies that a property does’t have a preceding sibling having the
same name, otherwise it will add an error describing the constraint violation.

The second query delaration must enforce property name validity. Its imple-
mentation verifies that a property name is not capitalized, otherwise it will add
a warning describing the constraint violation.

The last query delaration, in a manner similar to the previous one, must
enforce that entity names are capitalized.

Chapter 5

LWC11-Task-0.4

This page is part of the Whole Platform LWC11 Submission .

5.1 Task

0.4 Show how to break down a (large) model into several parts, while
still cross-referencing between the parts

For example, put the Car and Person entities into different files, while still
having the Person -> Car reference work.

5.2 Screenshots

EntitiesActions.xwl

5.3 Overview

The feature of breaking down a model into several parts, while still cross-referencing
between the parts consists of two orthogonal concerns: structural and behavioral.

From a structural point of view, you should be able, at least, to edit and
persist language fragments with the granularity you decide. The Whole Platform
poses almost no restrictions on the ability of operating on language fragments.
You can experiment by yourself this feature in a Whole editor simply by drag
and dropping an arbitrary model entity either over the root entity or in the
Package Explorer view.

From a behavioral point of view, you should be able to reconstruct, at least
logically, a (complete) model starting from the separated fragments. This can
be accomplished in different ways depending on the information available on
each fragment. The Whole Platform supports the creation of resource registries
including the ability to discover and load resources on demand.

43

44 CHAPTER 5. LWC11-TASK-0.4

To resolve this task, using the proposed granularity of a single Entity (of
the Entities language), no changes are required to the code developed so far.
The Entities language does not include information to reference and discover
separate modules (for instance the package and import declarations of Java).
So, we require the user to interpret a fragment in order to add its entities to the
global registry of defined entities.

The information collected on the Registry will be used by the runtime type
system implemented in Task 1.2 .

5.4 Details

Open the EntitiesActions.xwl model developed so far and add a SimpleAction
in correspondence with the interpreter tool.

The interpreter lazily creates a global registry identified by the URI of the
Entities language and adds to it a resource for each entity found on the model.

Chapter 6

LWC11-Task-1.1

This page is part of the Whole Platform LWC11 Submission .

6.1 Task

1.1 Show the integration of several languages

Define a second language to define instances of the entities, including assign-
ment of values to the properties. This should ideally really be a second language
that integrates with the first one, not just ”more syntax” in the same grammar.
We want to showcase language modularity and composition here.

6.2 Screenshots

InstancesGrammar.xwl

6.3 Details

Basically, we proceed by creating an InstancesGrammar.xwl as we did in Task
0.1 for the Entities Grammar model. At first we customize the grammar global
metadata.

45

46 CHAPTER 6. LWC11-TASK-1.1

Similarly to what we have already done for the Entities language, we add
the productions to define the overall language structure.

To complete the grammar we must define the Name and Value productions.
We copy the definition of the Name production from the Entities grammar as
is.

The Value production is defined using a Choose rule that contains all the
allowed literal types.

6.3. DETAILS 47

The Whole Platform has the ability to transform every parsed data literal
into a value of the declared production data-type. Obviously, many data formats
are supported but not all. In the Instances example, date types use a format
that is not automatically understood by the framework, so we have to extend
the language to support such a data-type by adding a customized IDataType-
Parser .

For this purpose we simply create a class that extends the Grammars-
DefaultDataTypeParser by adding the date format customizations needed.
The class has the responsibilities of parsing literals and unparsing values, both
achieved using a standard DateFormatter .

The class contains also an install(. . .) helper method meant to simplify its
deployment. It is invoked inside the LWC11Deployer.xwl as described in the
solution overview .

After deploying the Instances grammar it is possible to open the provided
InstancesExample.txt example using the Grammar Based Persistence .

48 CHAPTER 6. LWC11-TASK-1.1

Now, we want to showcase language composition by allowing definition of
entities together with instances in a single model. You can either define explicit
composition rules or use the SameStageFragment construct of the Commons
language as glue. The latter solution allows for ununticipated language compo-
sition and is available without any specific effort.

6.3. DETAILS 49

Warning

You have to File > Save As. . . the model using a generic persistence
because the grammar based persistences are not composable without an
additional effort.

The behavior we already defined for the Entities language continue to work
as expected when applied to a model containing both entities and instances. In
general to support ununticipated composition is sufficient to write path expres-
sions and patterns that capture exactly what we want without assuming that
the context (we traverse) contains only the constructs we defined.

50 CHAPTER 6. LWC11-TASK-1.1

Note

The actions defined for a given language are available only when the
root of the model is an instance of the language. In order to extend the
availability of such actions to a new language acting as a container you
have to redefine the actions by calling the original behavior. In order to
define an artifacts generator for instances that works on the entities defined
inside of the instances model, you have to add the following action to the
InstancesActions.xwl .

Chapter 7

LWC11-Task-1.2

This page is part of the Whole Platform LWC11 Submission .

7.1 Task

1.2 Demonstrate how to implement runtime type systems
The initialization values in the instance language must be of the same type

as the types of the properties.

7.2 Screenshots

EntitiesActions.xwl InstancesActions.xwl

7.3 Overview

To enforce type checking on Instances models we must leverage the information
collected on the Entities Registry described in Task 0.4 . More specifically, we
must verify that each Instance is valid with respect to the type it declares to
define.

To resolve this task, we add a validation operation to the Instances language.
The validation process consists of two complementary tasks: the first is to locate

51

52 CHAPTER 7. LWC11-TASK-1.2

the right type declaration, while the second is to perform type checks.

The list of type checks that are performed on every instance follows:

• Its type declaration must exists in the Registry.

• Its properties must have been declared in its declared type.

• Every property value must be compatible with the declared data type.

7.4 Details

Open the InstancesActions.xwl model developed so far and add a Simple-
Action in correspondence with the validator tool. Since the validation needs
the Entities Registry in scope to extract type definitions, we obtain it using
a workflows activity and then we proceed with the validation by calling the
validateInstances query declaration.

The validateInstances query declaration performs a top-down traversal of
all the Instances having the declared type contained in the Entities Registry. On
such Instances it iterates over the contained properties and enforces the type
checks.

The first check verifies that the property has a name, if not it adds an error
otherwise it continues validating the property name correctness. The second
check verifies that the property has a value: if it has a Name value if validates
the reference existence otherwise it verifies that the literal type conforms to the
type declaration.

7.4. DETAILS 53

The validateInstanceType simply tries to extract the type declaration
from the Entities Registry, adding an error on failures.

The addError adds error decorations to IDecorationManager in a similar
way to what we have done in the Entities validator (see Task 0.3).

54 CHAPTER 7. LWC11-TASK-1.2

The validatePropertyName ensures that the property name exists in the
declared type.

Reference constraints are verified by the validatePropertyReferenceValue
query declaration by looking for an Instance declaration with a name that
matches the property reference value being checked.

Finally, the validatePropertyLiteralValue checks that the property lit-
eral value type conforms to the corresponding property data-type in the declared
Entity type.

We can now open an Instances model and add some errors to test the vali-
dation operation.

7.4. DETAILS 55

56 CHAPTER 7. LWC11-TASK-1.2

Chapter 8

LWC11-Task-1.3

This page is part of the Whole Platform LWC11 Submission .

8.1 Task

1.3 Show how to do a model-to-model transformation

Define an ER meta model (Database, Table, Column) and transform the
entity model into an instance of this ER meta model.

8.2 Screenshots

ERModel.xwl EntitiesActions.xwl

8.3 Overview

We have to create a DSL, called ER , to model a very simplified database
schema. Then we have to write a mapping from the Entities to the ER DSLs.

The Task does not require us to use a given concrete syntax for the ER per-
sistence, so we are free to write directly the meta model using the Models DSL
letting the Whole Platform provide both a suitable persistence and notation.

57

58 CHAPTER 8. LWC11-TASK-1.3

8.4 Details

8.4.1 Creating the ER meta model

Using the Whole Model Wizard, create a new model called ERModel configured
with the Models language and an empty template.

Fill in the meta data information as it is shown in the figure below. Note
that the URI used follows a convention that permits the Whole Platform to
locate the meta model and deploy it on demand.

For each concept of the domain, add a SimpleEntity with the same name
and add the features you need to associate it to other concepts and to store
basic information. For instance the Table entity needs at least a name and a
columns features.

Then add two CompositeEntity to represent the collections of tables and
columns. Eventually add two DataEntity to represent names and types. The
resulting model should look like this:

8.4. DETAILS 59

8.4.2 Playing with ER instances

Before proceeding with the transformation, deploy and instantiate the meta
model to verify that the expressivity of the new language.

To deploy the meta model you simply have to click the Interpreter button
from the Whole toolbar. After deploying a meta model you get a full working
language integrated with the other languages and services of the Whole Plat-
form. To create an instance of the ER language you have to create a Whole
Model and select ER as Language. Observe that the procedure is exactly the
same as you did to create the meta model itself.

Note that the first concrete entity defined in the meta model will be instan-
tiated as the root entity of the new empty model.

Modeling a domain is an iterative activity because you do not know ex-
actly what you want to model from the beginning. With the Whole Platform
you are able to deploy even incomplete meta models. The editor will show a
placeholder for the underspecified entities and features. You can also redeploy
a model everytime you need to.

8.4.3 Writing the transformation

Open the EntitiesActions model and create a GuardedAction into the context
menu ”Analyze”. Name the menu item: ”Entities to XML”.

There is almost a one-to-one correspondence between the two meta models
that permit to write a very straightforward mapping.

The skeleton of the transformation can be written using three nested Se-
lect constructs of the Queries language. The outer one maps an Entities to a
Database ; the nested one maps an Entity to a Table ; and the innermost maps
a Property to a Column .

60 CHAPTER 8. LWC11-TASK-1.3

Note that the entities named Type in the two languages have a different
structure whereas the mapping seams to be one-to-one. This is possible because
the Platform automatically maps the two concrete entities of the abstract Type
of Entities to the data entity Type of ER using their textual representation.

Now we are ready to redeploy the EntitiesActions and to open an example
of Entities . In the context munu choose the newly added action to get the
following output in the Results view.

Chapter 9

LWC11-Task-1.4

This page is part of the Whole Platform LWC11 Submission .

9.1 Task

1.4 Some kind of visibility/namespaces/scoping for references

Integrate namespaces/packages into the entity DSL.

9.2 Screenshots

EntitiesGrammar.xwl

9.3 Details

Open the EntitiesGrammar model and add the following production at the
beginning of the Phrase Structure :

61

62 CHAPTER 9. LWC11-TASK-1.4

The new production consists of a concatenation of an optional package dec-
laration and an optional imports declaration followed by the Entities non ter-
minal. This way, the new production is backward compatible with the previous
grammar.

Rename the Start Symbol of the grammar to Module and redeploy the gram-
mar using the interpreter action. Close and reopen the Entities example to verify
the backward compatibility of the extended grammar and to discover the dif-
ferences in the resulting model.

As you can see the root entity is changed to an instance of Module with two
placeholders for the name and imports features. The model fragment under the
entities feature matches exactly the model created with the old grammar.

Now we can take advantage of the new modular syntax and divide the ex-
ample in two files with the one defining the Person entity importing the other.

Chapter 10

LWC11-Task-1.5

This page is part of the Whole Platform LWC11 Submission .

10.1 Task

1.5 Integrating manually written code (again in Java, C# or C++)

Integrate derived attributes to entities.

10.2 Overview

In the Task 0.1 we have created the Entities language by defining a grammar
for it. Every time we deploy the grammar, the Whole Platform derives a meta-
model and also deploys it, in most cases this is the desirable behavior. Now we
want to extend the language by adding the ability to define derived properties
using manually written code. To achieve this goal, it is sufficient to work at the
metamodel level without the need to change the grammar.

10.3 Details

Open the EntitiesGrammar.xwl and launch the Generate Artifacts toolbar
action. Open the newly created EntitiesModel.java file using Open With >
Java Builder Persistence context menu action. Append an optional feature
named behavior to the Property simple entity, using a type named Behavior
(it will be implicitly defined as abstract).

63

64 CHAPTER 10. LWC11-TASK-1.5

Deploy the EntitiesModel.java using the Interpret model toolbar action.
This way we have replaced the language deployed by the grammar with a back-
ward compatible improved version. Afterwards, we can reopen the Entitie-
sExample.txt and add an age property. For the derived behavior, copy the
following snippet and use the Paste As action as we did in the Task 0.2 ,
having care to choose Same stage level.

org.joda.time.Years.yearsBetween(

new org.joda.time.DateTime(),

new org.joda.time.DateTime(birthDate.getTime())).getYears()

Use the File > Save As. . . menu action to save the modified model us-
ing the file name EntitiesExample2.xwl and the XML (Whole Template
Builder) persistence.

10.3. DETAILS 65

Note that all of the behavior defined so far continues to work properly as be-
fore the metamodel change. In order to take into account the derived properties
open the EntitiesActions.xwl and, in the ArtifactGenerator action, wrap
the innermost select clause with a Choose construct. Finally, insert a first case
that only produces a derived getter when the behavior is defined.

Now we can redeploy the actions and apply the artifacts generator to the
example.

66 CHAPTER 10. LWC11-TASK-1.5

Chapter 11

LWC11-Task-1.6

This page is part of the Whole Platform LWC11 Submission .

11.1 Task

1.6 Multiple generators

Generate some kind of XML structure from the entity model.

11.2 Screenshots

EntitiesActions.xwl

11.3 Details

To generate an XML structure from an Entities model you can reuse the trans-
formation described in Task 1.3 .

Open the EntitiesActions model and drag and drop a copy of the menu
action named ”Entities to ER”. Rename the new menu item to ”Entities to
XML”.

It is sufficient to replace the three templates of ER with XML based ones.
We can map Entities to an XML Document with a root Element having the
tag named ”entities”. Then we can map Entity to an ”entity” Element having a
name attribute. Finally we can map Property with a ”property” Element having
a name and type attributes. The resulting model should look like this:

67

68 CHAPTER 11. LWC11-TASK-1.6

Now we are ready to redeploy the EntitiesActions and to open an example
of Entities . In the context menu choose the newly added action to get the
following output in the Results view.

Chapter 12

LWC11-Task-2.1

This page is part of the Whole Platform LWC11 Submission .

12.1 Task

2.1 How to evolve the DSL without breaking existing models

12.2 Overview

A classic and widely accepted approach to software evolution prescribes back-
ward compatibility and API stability. We think that this approach is too much
conservative and fails to take advantage of the model driven technologies.

We are committed to support evolution of (meta)models and model instances
including model transformations. To achieve this goal we follow two complemen-
tary strategies. We outline, at first, a short term solution using non breaking
design and, secondly, a long term solution using model versioning and migration.

Just take into consideration that during the development of the solution we
have already seen examples of non breaking design:

• Grammars additions don’t break backward compatibility of both the
parser/unparser and the derived metamodel

• Models additions don’t break backward compatibility with existing in-
stances

• Queries transformations tolerate both the preceding Grammars and
Models evolutions

12.2.1 Non breaking design

The ease of evolution of a DSL can be much improved by having a solid knowl-
edge of the non breaking changes supported by the Language Workbench in use.
In a model focused language workbench like the Whole Platform, the separation
of the metamodel from its persistences and notations gives us three degrees of
freedom to address software evolution.

69

70 CHAPTER 12. LWC11-TASK-2.1

Metamodels

The non breaking changes of a metamodel are the following:

• addition of entities

• appending of features

• changes to the hierarchy of abstract types (as long as they preserve the
feature list on the concrete entities)

• replacing a feature type with a more abstract one

The set of the perceived non breaking changes can be altered by notations and
even more by persistences.

Notations

Notations can always be introduced and evolved without breaking existing mod-
els and transformations. The opposite is also true for the Generic notations that
are, by definition, language neutral, even with respect to the metamodel evolu-
tion. A non breaking change to a metamodel makes the specific notations less
specific and more projective (accidentally). Less specific because additional en-
tities are shown using a generic notation as a fallback. More projective because
additional features could be hidden by the specific notation.

Persistences

Persistences can always be introduced and evolved without breaking existing
models and transformations. A persistence can be designed to be more or less tol-
erant to non breaking changes of the metamodel. For instance the Java Builder
Persistence and the XML Builder Persistence by default are tolerant to
additions and to feature name changes. The XSI Persistence instead is by
default tolerant to reordering of features and to XML fragments not conforming
to the declared XSD. Nevertheless, the bundled persistences can be configured
to be tolerant to a different set of changes.

12.2.2 Model Versioning and Migration

Many languages bundled with the Whole Platform support the specification of
an URI to uniquely identify a specific instance, for example Models , Gram-
mars , Actions , and XSD . Whenever you want to introduce breaking changes
to a model you should also change its URI. This way it is possible to deploy
multiple versions of a metamodel, of a grammar and so on. Consequently, it
is also possible to define a model to model transformation to allow automatic
migration of instances. Given that the transformations are also modeled, it is
possible to write specific model to model transformations to migrate them.

In the Task 3.1 we will define two transformations to migrate both Entities
to Models and their respective instances. You can regard the two transforma-
tions as examples of model migration.

Chapter 13

LWC11-Task-2.2

This page is part of the Whole Platform LWC11 Submission .

13.1 Task

2.2 How to work with the models efficiently in the team

13.2 Overview

The Whole Platform language workbench is an Eclipse based product. All of
the model artifacts written with the Whole Platform are stored by default using
a generic XML based persistence. This implies that the facilities provided by
the Eclipse platform to support project management, local resource versioning
and team collaboration are also available to the Whole Platform users.

It is interesting to observe that the development process also requires agile
means for exchanging snippets. Our tool supports exchanging of arbitrary model
fragments via clipboard or drag-and-drop through popular collaboration tools
such as Skype, DropBox, and Pastebin.

Another important feature of the Whole Platform is that it is easy to re-
alize a customized language workbench product that bundles specialized DSLs
(for defining metamodels, rules, mappings. . .) each providing multiple notations
targeted to different team roles. This way you can tailor the Whole Platform to
your specific development needs or to those of your customers.

71

72 CHAPTER 13. LWC11-TASK-2.2

Chapter 14

LWC11-Task-2.3

This page is part of the Whole Platform LWC11 Submission .

14.1 Task

2.3 Demonstrate Scalability of the tools

14.2 Overview

The Whole Platform is an open source mature language workbench, already
employed in more than 40 commercial products developed since the beginning
of 2005. It has been successfully deployed worldwide mainly for customers op-
erating in the financial sector, specifically in the fields of electronic money and
payment systems.

The scalability of the Whole Platform is proved by the fact that it is being
employed in the definition of a large number, both in size and in quantity, of data
definition models (metamodels, grammars, xsd), and of transformation models.

For instance, we have approximatively deployed:

• Several complex data formats (20 SEPA, 900 FIN, 300 RNI)

• 200 configurations of Software Product Lines

• 1000 workflows

• 300 test cases

The memory footprint is improved by the ability of deploying dynamic models
and transformations at runtime without generating code. We have products that
work with a large number of domain languages that would require a space in
the order of gigabytes if generated.

The memory footprint is furthermore improved by the availability of the
streaming APIs at the framework level. Several persistence providers, including
XML Schema, XML, and grammar based, fully support both read and write
operations in streaming. Model streaming permits to apply transformations to
very large instances, that otherwise would be impossible to process in memory.

73

74 CHAPTER 14. LWC11-TASK-2.3

The performance of the Whole Platform is optimized even in dynamic de-
ployment scenarios using a just-in-time compiler for the transformation lan-
guages. For instance, the performance of the Sepa Credit Transfer product is of
44000 transactions per hour server including for each transaction the time for:
parsing, validation, enrichment, translation, assembly, bulking, tracing, routing.

Chapter 15

LWC11-Task-3.1

This page is part of the Whole Platform LWC11 Submission .

15.1 Task

3.1 Integration with the platform native modeling language

Integrate the Entities and Instances languages with the native modeling
languages of the language workbench. We want to show how to expose the
modeling services to other modeling languages.

15.2 Overview

For a language workbench is reasonable to have a main modeling language
for defining the structure of a language. This way all the modeling services
can be implemented once and are available to other modeling languages via
translational semantics.

Let us describe the integration of XML Schema Definitions and XML
Schema Instances into the Whole Platform to outline the kind of integration
we expect to achieve for Entities and Instances . We have defined an XSD
to Models translator, and a bidirectional translator between XSI and Models
instances that uses the knowledge derived by the former translator. Afterwards,
we have defined the interpretation of an XSD as the application of the translator
to Models followed by the deployment of its output. Also, we have defined a
persistence for XSI that applies the bidirectional translator after having located
and deployed also the schemas where needed. This way, whenever an XML
Schema Instance is loaded you are able to edit the model at a domain specific
level, change the persistence and the notation, and so on.

In order to obtain a similar integration for Entities and Instances we have
to define an Entities to Models translator and a generator from Instances
to the corresponding models instance. The Entities language can be regarded
as a small subset of the Models language so the translation is straightforward.
Note that each primitive type requires a separate data entity in Models .

75

76 CHAPTER 15. LWC11-TASK-3.1

The translation of the instances is almost a one to one mapping between
each instance and the code to instantiate the corresponding entity.

15.2. OVERVIEW 77

To avoid changes to the actions already defined for Entities and Instances
we decided to add three new actions: Entities to Models , Instances to Models
instance and Deploy as Models . The first two contain the behavior just defined
while the latter is defined as follows:

Now we can load, for instance, the EntitiesExample.txt and deploy the
corresponding model by calling Deploy as Models . Here we show also the derived
model as is produced by calling Entities to Models .

78 CHAPTER 15. LWC11-TASK-3.1

Afterwards, we can load the InstancesExample.txt and translate it into
the corresponding model instance.

15.2. OVERVIEW 79

By switching to a Tree table notation is even more evident the specificity of
the derived model.

Observe that many constraints that before were checked by the validator
now are structurally enforced. Furthermore the specific model is more suitable
for applying model transformations.

80 CHAPTER 15. LWC11-TASK-3.1

Chapter 16

LWC11-Task-3.2

This page is part of the Whole Platform LWC11 Submission .

16.1 Task

3.2 Testing

Show how to test the grammars and the transformations.

16.2 Overview

The Whole Platform includes a Tests DSL focused on writing and executing
unit tests. The Tests language is very close to the well-known JUnit library;
in fact, we provide a translator to Java that uses JUnit 4 in addition to a
standalone interpreter.

Furthermore, the DSL has a learning mode (see menu actions) to auto-
complete tests based on the actual behavior. To cope with differences between
repeated executions of a test, it is possible to define filtering rules that remove
irrelevant differences. The learning mode action features automatic definition of
filtering rules!

An integrated testing DSL grants more intentionality due to the use of al-
most plain English assertions on models shown with their own domain specific
notations.

16.3 Details

Create a LWC11Tests.xwl model with a test suite having two test cases: one
for testing grammars and the other for testing the model transformations. Don’t
forget to define the deployer feature of the test suite using a Workflows that
loads and deploys the LWC11Deployer.xwl .

81

82 CHAPTER 16. LWC11-TASK-3.2

To test a grammar you have to test both the parser and the unparser with
assertions covering each production and the more relevant compositions of them.
Here, for simplicity, we define just two assertions for each grammar that demon-
strate only that the bundled examples are working. Use the Parse and Unparse
activities of the Workflows DSL to invoke the relative Grammars’ operations.

16.3. DETAILS 83

Use an ActionCall construct to test the behavior defined in an action of
the EntitiesActions.xwl .

Note that a programmatic call to an artifacts generator action produces only
an artifacts model, while invoking it interactively also produces the expected side
effects on the file system. This way we are able to test even actions producing
side effects.

84 CHAPTER 16. LWC11-TASK-3.2

Do remember that you are not forced to write by hand the models in the
matches clauses: you can leave them empty and call the Complete test suite
action.

Chapter 17

LWC11-Task-3.3

This page is part of the Whole Platform LWC11 Submission .

17.1 Task

3.3 Debugging

Show how to debug a model transformation.

17.2 Overview

The development of complex model transformations is greatly simplified by the
availability of a debugger. The Whole Platform provides a domain level debugger
that is able to use the domain specific notations to show both the variables and
the behavior being executed.

17.3 Details

Open the EntitiesActions.xwl and add three Breakpoint constructs of the
Workflows DSL as shown in the following figure. In the second and the third
breakpoints add a list of variables to reduce the number of variables that will
be shown in the Variables debug view. Finally, redeploy the actions using the
Interpret model toolbar action.

85

86 CHAPTER 17. LWC11-TASK-3.3

Open the EntitiesExample2.xwl and launch the Generate Artifacts tool-
bar action. The Language Workbench will perform a perspective switch auto-
matically, simply put in background the ArtifactGenerator job dialog. The De-
bug view shows the executing behavior highlighting the breakpoint on which
the debugger suspended. The Variables view shows all of the variables in scope,
since the first breakpoint doesn’t provide a variables list. Note that in the orig-
inal editor the current self entity is highlighted.

17.3. DETAILS 87

Pressing the Resume button in the Debug view the execution resumes up
to the second breakpoint. As expected, in this case only a subset of the variables
in scope is shown in the Variables . Note that the shown variables are templates
that have been partially filled in.

Press the Resume button again to reach the last breakpoint at the end of
the where clause. Note that, at this point, the field and the getsetImpl variables
have been completely filled in.

88 CHAPTER 17. LWC11-TASK-3.3

Pressing the Resume button again the execution suspends at the beginning
of a new iteration of the where clause. Note that the results of the previous
iteration are already visible in the beanClass variable.

Note that on the property with the derived behavior the field variable is not
in scope, as shown in the Variables view.

Any time, you can either stop the debugger by pressing the Terminate
button or resume execution with all breakpoints disabled by pressing the Run
button.

	LWC11-Submission
	LWC11 Submission using the Whole Platform
	Phase 0 - Basics
	Phase 1 - Advanced
	Phase 2 - Non-Functional
	Phase 3 - Freestyle

	LWC11-Task-0.1
	Task
	Screenshots
	Overview
	Details
	Creating a Whole Project
	Creating a Grammar Model
	Using the Grammar Model

	LWC11-Task-0.2
	Task
	Screenshots
	Overview
	Details

	LWC11-Task-0.3
	Task
	Screenshots
	Overview
	Details

	LWC11-Task-0.4
	Task
	Screenshots
	Overview
	Details

	LWC11-Task-1.1
	Task
	Screenshots
	Details

	LWC11-Task-1.2
	Task
	Screenshots
	Overview
	Details

	LWC11-Task-1.3
	Task
	Screenshots
	Overview
	Details
	Creating the ER meta model
	Playing with ER instances
	Writing the transformation

	LWC11-Task-1.4
	Task
	Screenshots
	Details

	LWC11-Task-1.5
	Task
	Overview
	Details

	LWC11-Task-1.6
	Task
	Screenshots
	Details

	LWC11-Task-2.1
	Task
	Overview
	Non breaking design
	Model Versioning and Migration

	LWC11-Task-2.2
	Task
	Overview

	LWC11-Task-2.3
	Task
	Overview

	LWC11-Task-3.1
	Task
	Overview

	LWC11-Task-3.2
	Task
	Overview
	Details

	LWC11-Task-3.3
	Task
	Overview
	Details

